A Probabilistic Temporal Logic with Frequency Operators and Its Model Checking

نویسندگان

  • Takashi Tomita
  • Shigeki Hagihara
  • Naoki Yonezaki
چکیده

Probabilistic Computation Tree Logic (PCTL) and Continuous Stochastic Logic (CSL) are often used to describe specifications of probabilistic properties for discrete time and continuous time, respectively. In PCTL and CSL, the possibility of executions satisfying some temporal properties can be quantitatively represented by the probabilistic extension of the path quantifiers in their basic Computation Tree Logic (CTL), however, path formulae of them are expressed via the same operators in CTL. For this reason, both of them cannot represent formulae with quantitative temporal properties, such as those of the form “some properties hold to more than 80% of time points (in a certain bounded interval) on the path.” In this paper, we introduce a new temporal operator which expressed the notion of frequency of events, and define probabilistic frequency temporal logic (PFTL) based on CTL∗. As a result, we can easily represent the temporal properties of behavior in probabilistic systems. However, it is difficult to develop a model checker for the full PFTL, due to rich expressiveness. Accordingly, we develop a model-checking algorithm for the CTL-like fragment of PFTL against finite-state Markov chains, and an approximate model-checking algorithm for the bounded Linear Temporal Logic (LTL) -like fragment of PFTL against countable-state Markov chains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Büchi Automata for LTL\GU

LTL\GU is a fragment of linear temporal logic (LTL), where negations appear only on propositions, and formulas are built using the temporal operators X (next), F (eventually), G (always), and U (until, with the restriction that no until operator occurs in the scope of an always operator. Our main result is the construction of probabilistic Büchi automata for this logic that are exponential in t...

متن کامل

Model Checking Probabilistic Lossy Channel Systems

Lossy channel systems model a set of nite state processes interacting with each other over unbounded, lossy FIFO channels. This computational model is an abstraction of protocols in the lower layers of the network protocol hierarchy. In spite of its unbounded FIFO queues the Lossy channel system model is not turing-powerful. It has been shown that the reachability problem is decidable 1]. Howev...

متن کامل

Undecidable Cases of Model Checking Probabilistic Temporal-Epistemic Logic

We investigate the decidability of model-checking logics of time, knowledge and probability, with respect to two epistemic semantics: the clock and synchronous perfect recall semantics in partially observed discrete-time Markov chains. Decidability results are known for certain restricted logics with respect to these semantics, subject to a variety of restrictions that are either unexplained or...

متن کامل

Undecidable Cases of Model Checking Probabilistic Temporal-Epistemic Logic (Extended Abstract)

We investigate the decidability of model-checking logics of time, knowledge and probability, with respect to two epistemic semantics: the clock and synchronous perfect recall semantics in partially observed discrete-time Markov chains. Decidability results are known for certain restricted logics with respect to these semantics, subject to a variety of restrictions that are either unexplained or...

متن کامل

Simulative Model Checking of Steady State and Time-Unbounded Temporal Operators

When working with large stochastic models simulation remains the only possible analysis technique. Therefore, simulative model checking is the way to go. While finite time horizon algorithms are well known for probabilistic linear-time temporal logic, we provide an infinite time horizon procedure as well as steady state computation, based on exact stochastic simulation algorithms. We demonstrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011